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Abstract. It is shown that the multipole expansion of
each order of the polarization series converges for large
enough intermolecular distances when finite basis sets of
Gaussian or Slater-type functions are used to approxi-
mate molecular response properties. Convergence of the
multipole expansion for each order of the polarization
series does not imply convergence of the polarization
series itself. A corresponding convergence condition is
extracted from the general perturbation theory in a
finite-dimensional space and is applied to the H + H*
problem.
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1 Introduction

A most important means for understanding and mod-
eling intermolecular potential-energy surfaces is provided
by the traditional multipole expansion for long-range
interaction energies in combination with the so-called
polarization series [1-3]. In polarization theory first the
Hamiltonian of the “supermolecule” A + B is parti-
tioned as

A=0"+A"+7 (1)

where A" and A" are the Hamiltonians of the isolated
molecules A and B, and V' is the operator of the
Coulombic interactions between the set .o/ of all
electrons and nuclei of system A with the set % of all
electrons and nuclei of system B:

qiq; )
;J;m—kr]—r, ’ (2)

where R is the vector pointing from the origin of a local
coordinate system for molecule A to that of B and r; the
position of a particle (electron or nucleus) with charge ¢;

relative to a molecular coordinate system. The electrons
of system A are thus considered to be distinguishable
from those of system B. Then a Rayleigh— Schrédinger
perturbation series correspondlng to Eq. (1) is con-
structed using products \l// )yg) of the unperturbed

eigenstates of A and HB For simplicity it will be

assumed that A" and A" have nondegenerate ground
states. The polarization energy of nth order is obtained
as

n—1)
EL = (w7195 3)
0
with [P50) = [Wo) = [0 We) and E\) = E)) = Ep+

EB. The polarization wavefunction of nth order is
determined from the inhomogenous differential equation

n—1)
_V|\Ppol >

+ Z Epol |1Ppol (4)

in restricting its solution to the orthogonal comple-
ment of |¥y). The multipole expansion of the different
orders of the polarization series can now be intro-
duced using a spherical tensor formulation [4] by
substituting the Coulombic interaction operator, V,
with

I}mult = LILm Z Z [YM

L=0M=-%

(1" + A° = Eo)| W) =

R)Y D qigiRyy 1))

icd jeR
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where Rj,(r) and I;,,(r) denote regular and irregular
spherical harmonics, respectively [4]. This series con-
verges absolutely when all distances |r; — r;| between the
particles of the different subsystems are smaller than
R = |R|. On inserting the addition theorem

4
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Qe+l I &
< (=1 (21)!(21’)!(m - M)
Xle(ri)Rl’m’(r/) ) (6)

the resulting multipole expansion of the interaction
operator converges to ¥ when all particles of molecules
A and B are found within nontouching spheres around
the origins of the molecular coordinate systems.

Inserting the multipole expansion of the interaction
operator into the polarization series leads to an expan-
sion of the polarization energies and the total interaction
energy in powers of 1/R. The convergence properties of
these 1/R expansions are not evident since the static and
response charge densities of two molecules always
overlap and the series (Eq. 5) does not converge when
for at least one pair of particles |r; —r;| > R. The present
knowledge of the convergence properties of 1/R expan-
sions of interaction energies has been summarized in a
recent review article by Jeziorsky et al. [3]:

Theorem 1. The 1/R expansion of the total interac-
tion energy converges asymptotically to the ground-
state interaction energy [5, 6].

Theorem 2. For each finite R, however, the 1/R
expansion may diverge. Actual divergence of the
series has been proven for the H, molecule [5] and the
Hj ion [6-8].

Theorem 3. The 1/R expansion of the second-order
polarization energy for the Hj ion, i.e., its induction
energy, diverges for all finite R [9].

Theorem 4. The 1/R expansion of the second-order
polarization energy for the H, molecule, i.e., its
dispersion energy, diverges for all finite R [10].

In view of the fact that most electronic structure
calculations are performed with finite-dimensional one-
particle basis sets comprising a limited number of
Gaussian-type functions (GTFs) or, sometimes, Slater-
type functions (STFs) the following theorem due to
Stone and Alderton [11, 12] and Vigné-Maeder and
Claverie [13] is of particular interest:

Theorem 5. Given that finite-dimensional GTF or
STF basis sets are used to approximate each of the
electronic charge densities of molecules A and B, the
1/R expansion of the first-order interaction energy

pol wo %|V|% %bo /dr/dr’H (7)

converges, as long as the smallest spheres around the
respective molecular origins which contain all nuclei
and all centers of the basis functions do not touch.

Note that the 1/R expansion of E 1 is obtained from a
formal replacement of V' with Vmun, although the charge
distributions and integrations in Eq. (7) extend to
infinity. As a consequence, convergence of thls 1/R
expansion does not imply that it converges to E! o> but
rather to some value different from it. Following the
arguments given by Vigné-Maeder and Claverie [13]
it is probable that the 1/R expansion of the first-order
electrostatic energy converges in general, i.e., also for
molecular charge distributions represented by complete

basis sets. Yet this was not rigorously proven by the
authors.

In practice not only the static electronic charge den-
sities but also the molecular response properties, such as
static and dynamic polarizabilities and hyperpolariz-
abilities, are calculated using finite-dimensional basis
sets; therefore, it is interesting to see whether a theorem
analogous to theorem 5 holds for second- and higher-
order contributions to the intermolecular interaction
energy in these cases. As shown in the following theorem
5 can indeed be generalized to

Theorem 6. Given that a finite number of GTFs or
STFs is used as a one-particle basis set, the multipole
expansion of each order of the polarization series
converges, as long as the smallest spheres around the
respective molecular origins which contain all nuclei
and all centers of the basis functions do not touch.

This does not imply, however, convergence of the
multipole expanded polarization series itself. In Sect. 4
a sufficient condition for convergence of the multipole
expanded polarization series is extracted from the
general perturbation theory in a finite-dimensional space
[14, 15], and numerical illustrations are given for
the simplest possible case, i.e., for the hydrogen atom
represented in a GTF basis set which is perturbed by a
proton.

2 Multipole expansions of elementary charge
distributions

While numerical techniques can be employed for
electronic structure calculations on atoms and linear
molecules, nearly all calculations on polyatomic
molecules are carried out using spin-orbital basis sets
(rola) = ¢, (rw) = y,(r)o, derived from a finite number,
N, of spatial basis functions, y,(r), multiplied by spin-up
and spin-down functions, w,. The electronic charge
density, pg(r), can then be expressed in terms of
elementary charge distributions (ECDs), i.e., all possible
products y}y, of the spatial basis func‘uons Thus, the
electron—electron interaction part of E()1 will be a
superposition of the Coulombic mterdctlons between
ECDs:

/ /d/pel pel )
R+ —rf

:ZZPAPB/dr/dNa |R+r/£sz(r)

ab cd

= ZZPAPB (aclbd) . (3)
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Suppose that the spatial basis function set is com-
posed of (complex) spherical GTFs

R (135,
Ny = Iy + 2k, , (9)

Xa(r) = Gy, md(aaa ry) =

or of spherical STFs
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where r, = r — R, is the distance vector to the center R,
of the basw function (r, = |ra|), o its (positive) expo-
nent, and 0% ,, means the k,th derivative with respect to
(—oa). It is easy to see that the Coulombic interaction
between two ECDs has a multipole expansion consisting
of a finite number of terms when

1. The GTFs or STFs contributing to the first ECD y; x,,
are localized on the same center R, = Ry,

2. The GTFs or STFs contributing to the second ECD
1syq are localized on the same center R, = Ry.

3. The multipole expansion centers coincide with R, and
R..

This follows from integration over the angular part, Q,,
of the spherical coordinates of r,,

/ QuR;, (Fa)Rim () Ry (1)

a 0 0 0 —m, my m ’
(11)

which vanishes for / > [, + [, [16], and an analogous
relation for the integral over Q.

In the case of GTFs a similar statement holds for
ECDs for which R, # R}, and/or R # Ry. This was first
observed by Hall and Martin [17, 18] and is a direct
consequence of the Gaussian product theorem [19]

e “e —opry _ e ;f:,}fb(R; 7Rb)ze—(““+“h)r§b 7 (12>
rap =T — Rap =1 — (0uRy + Ry /(02 + 1) (13)
which states that a product of two 1s GTFs

(n = [ = m = 0) centered around R, and Ry, respectively,
is proportional to a single 1s GTF centered around the
“overlap center” Ry, i.e., a point on the line between R,
and Ry,. For a product of a 1s GTF with, say, a 3s GTF
(n=2, [=m=0, note from Eq. (9) that 2s GTFs
normally are not employed) application of d' shows
that one will obtain a linear combination of a 1s and a 3s
GTF, both with exponent (a, + ap) and both centered
around R,;,. This can easily be extended to products of s
GTFs with higher n quantum numbers as well. Further-
more, the product of a 1s GTF with, say, a 3d GTF is
equivalent to a linear combination of 1s, 2p, and 3d
GTFs, all three centered around Ry, and with exponent
(ota + o). This follows from the addition theorem
(Eq. 6) for Rs3,(ry) = R3u(rap — Ry + Ryp). In a similar
way one can see that every product of two GTFs located
at R, and Ry, with exponents «, and o, and angular
momentum quantum numbers /, and [y, respectively, is
equivalent to a finite linear combination of GTFs with
angular momenta of at most (/, + /), all having the
same exponent (u, + ap) and all located at the overlap
center R,,. Choosing R, and the corresponding overlap
center Ry of the second ECD as the expansion centers,
it is again found that the multipole series for interaction
of two ECDs terminates at L = I, + [, + I + 4.
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Let us denominate the interaction energy between
these “‘overlap multipole moments” (OMM:s) by Woli/ltﬁ
Please remember that ngﬁﬁ\i (ac|bd) since it results
from a formal replacement of 1/|[R+1v —r|=1/|(R+
Rab — Req) + 10y — rap| with a multipole expansion anal-
ogous to Egs. (5) and (6) in r,p, and r,; which is not valid
for |r,y — rap| > |R + Ryp — Reg|. Nevertheless, WOM]\(}[ isa
finite number which represents the exact multipolar part
of the Coulombic interaction energy (ac|bd).

In contrast to the situation for GTFs, an ECD
composed of two STFs which are located at different
centers cannot be reduced to a finite linear combination
of STFs. As a consequence, there is no center such as the
overlap center for GTFs which would guarantee a
terminating multipole expansion. Yet, the integral

transformation
o0
pe A
e = [ dsy ———=5e (14)
“y 3/2
/ VT Sa

between STFs and GTFs [20, 21] has been used by
Vigné-Maeder and Claverie [13] to point out that the
multipolar part of an ECD composed of two 1s STFs
can be reduced to a charged line between the two STF
centers. Pursuing this idea it is not difficult to see that

I

e e — [ du / 4 P (B.u)e " (15)
0

where

Fan(fu) =

sty @P{ = [(1 =12 + 1]/ [4u(1 )] —u(1 =) B(R,~Ro)"}
47 [} u32(1— u)3/2

(16)
and
r,=r—R,=r—[uR, + (1 —u)Ry] , (17)

R, being is a point on the line between R, and Ry.
Inserting Eq. (15) and a corresponding expression for
the second ECD into the two-electron integral (ac|bd),
replacing 1/[R+v —r/=1/|[R+R,—R,) +1, —r1,]
with a multipole expansion analogous to Egs. (5) and
(6) in rj, and r,, and performing the integrations over
these variables yields

1
s = [[au [ doquanoio® +R~R) . (19)

0

where

qav(u) = [ dB PFa(Bu) | dr, Roo(r,)e
Ry

o0

—n3/2/d/3de(ﬁ,u)/\/B . (19)

0
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These formulae show that the exact multipolar part of
(ac|bd) is given by the Coulombic interaction between
continuous charge distributions g, () and geq(v) located
on the lines R, and R,, respectively. In analogy to the
situation for GTFs, this exact multipolar part will also
be called ng;lbﬁ. Furthermore, following similar consid-
erations one can see that the product of a 1s STF with
a 2p STF has an exact multipolar part consisting of
continuous charge and dipole distributions spread along
the line between their centers, that the product of two 2p
STFs leads to charge, dipole and quadrupole distribu-
tions, and so on. Finally, note that the same is also true
for products of STFs with higher n quantum numbers
(2s, 3s, 3p....) since, for example, & L. gab(u) is also a
continuous charge distribution along R

Consider now the situation when the multipole ex-
pansion for the interaction of two ECDs is performed
around the origins of the molecular coordinate systems
instead of the overlap centers for GTFs or the “overlap
lines” for STFs. If the molecular origin does not coincide
with an overlap center, there will be no highest nonva-
nishing multipole moment. Thus, the energy of interac-
tion WI%L of the multipoles at the molecular origin will
not be Constant after a certain power L of 1/R. Yet, if the
point and line multipolar distributions contributing to
the exact multipolar part, Wgﬁ;lbl\j, of (ac|bd) are located
within spheres of radius g, and g, around the respective
molecular origins and if these spheres do not touch
(0, + 0, < R) it follows from the uniform convergence of
Egs. (5) and (6) under these circumstances that

ac,bd ac,bd
Hm e = Wonm -

(20)

The interaction between the multipoles equivalent to
the ECDs of molecule A and the nuclear point charges
of molecule B (denoted by Woak;&) and vice versa can
be treated as a special case of the above con-
siderations. Furthermore, generalization to (finite)
linear combinations of the spherical GTFs or STFs
such as Cartesian, real spherical or contracted basis
functions 1is straightforward. Theorem 5 then follows
directly from Eq. (20) and the fact that there is only
a finite number of ECDs which contributes to the
electronic charge distributions.

3 Convergence of multipole expanded polarization
energies

In order to extend theorem 5 to higher-order polariza-
tion energies and wavefunctions we first remember that
the true eigenstates of the unperturbed molecular
Hamiltonians are usually not available. In general, the
best one can hope for is their approximation by full
configuration interaction (CI) wavefunctions constructed
from the finite-dimensional one-particle basis set. Using
the same one-particle basis set for the evaluation of all of
its terms the polarization series results from perturbation
theory in a finite-dimensional space, as treated in chapter
2 of Kato’s book [14] or, even more extensively, in
Baumgirtel’s book [15]. This finite- (though, in general,
high-) dimensional space is spanned by all products

|®,) = [p2)|¢p) of the full CI wavefunctions |¢”) and
¢y,) for molecules A and B, respectively. These wave-
functions can be represented as eigenstates of a second-
quantized molecular Hamiltonian, which in the general
case of a nonorthogonal one-particle basis set can
conveniently be written as [22]

_ ~A o
%A = (SAl)ab<b|h |C>a;ac

1 U
+ 33 ap(S3ea (bdlela alar ag + Wiy - (21)
The creation operator of a spin orbital, y,, is denoted by
a;, the annihilation operator of the corresponding
biorthogonal orbital by a;, (Sy'),, is an element of
the inverse of the overlap matrix, and W2 stands for the
nuclear interaction energy of the molecule. The summa-
tion convention was employed in Eq. (21) and will also
be used in the following. A completely analogous
equation holds for molecule B, however with all a
replaced by b} and all a; by b The distinction between
a; and b/ is crucial for polarlzatlon theory owing to the
underlying assumption of distinguishability between
the electrons in molecules A and B, respectively. The
operator of the intermolecular interaction potential can
now be written as

(SA )ab<b|Vnuc| > ;r&; + (Sl; de e|Vnuc|f>b+[;;
(SA )ab(SB )ae (belch)a, a; b+bf + e (22)

nuc °
V .ue denotes the operator of the electric potential of the
nuclei of molecule A, WAB the electrostatic interaction
energy between the nucléi of both molecules. A second-
quantized interaction operator for indistinguishable
electrons was given by Mayer (the sum of the Hamilto-
nians H, and Hj of Ref. [23]).

Replacing the one- and two-electron integrals by their
exact multipolar parts one can define an exact multipo-
lar intermolecular interaction operator in a similar way
as was done in Refs. [11-13] for the exact multipolar part
of a molecular charge distribution:

be,B 4+~ f.A
(SA )def\:/[Ma;r ac (SB )deWSMMb+bf

(SA )ab(S )deWOIi/ICI\f/Iad ~c_b+bf + WAB .

nuc

Y oMM =
(23)

Since the operator (Eq. 23) contains only a finite number
of terms it is trivially a bound operator when finite-
dimensional molecule centered basis sets are used and
when the envelopes of the two molecules containing the
nuclei and all centers of the GTFs or STFs and the
straight lines connecting them do not touch. Replacing
¥ by ¥omm in the finite-dimensional analogs to
Egs. (3) and (4) defines an exact (for the given basis
set) multipolar polarization series

n n—1
Egim = <‘I’0|V0MM|‘DE)M1\>4> ; (24)

1
|‘Dgﬂm>=e@0( 7 omm | Pnann) +ZEOMM|(DOMM>> :
k=1

(25)

where



Z |(D (I) (26)
r;éO -

is the reduced resolvent of the ground state of
AN+ A

On the other hand, an ordinary multipole expanded
polarization series including terms of a power in 1/R up
to 1/R" is obtained by replacing ¥~ with an operator
¥"1/re, Which is defined in analogy to ¥"omm using
the matrix elements W, instead of Womm. Using
01 = 5u, 150 [(0lOl) /() it is casy to see
that under the operator norm

Jim [~ ¥ onml| =0 (27)
since for each ¢ and ¢’ the expectation value
(@7 1/re]@") is just a finite sum of terms converging
towards (|7 omm|¢’). As a special case it follows from

Eq. (3) that Ei/iel Eoymms as is already known from

the last section. Furthermore, one has
1 1
||¢i/)RL - q")g)lz/[M” = |2 (V"1 /re — 7 omm) Dol
< | Zollll7"1/r:

(28)
so that lim;_, (I)gl)RL = (D(OII)VIM> and theorem 6 is seen to
hold for the first-order wavefunction as well. For higher
orders in n complete induction can be used to show

theorem 6. Observe that

— 7 omm|l ,

17710 = 7 onm ®ra

<N — VOMMHH(DOMMH
+H“V0MMH||(D1/RL — gl

- n—1) n—1)
177 1re = 7 omm 19! — @Gl (29)
and, therefore,

d. 71 ®) = Y oum @l when
o\

|/RL — ®gyy- In an analogous manner one finds

EY o ES ol b Utilizing this with the recur-
sive Egs. (24) and (25) and their counterparts expanded in
1/RE proves theorem 6 for the higher-order corrections.

4 Convergence of the multipole expanded
polarization series

Convergence of the 1/R expansion with increasing
powers of L for each individual nth-order term of the
polarization series, however, has to be clearly distin-
guished from convergence of the multipole-expanded
polarization series itself, i.e., with increasing order n. Its
convergence is only guaranteed when ag = min, || 7 omm
—of| is smaller than (E 5()) - ) /2, where o is a scalar
[24]. Since ¥ omm 1S a hermman operator it can be
diagonalized in the product space of the full CI
wavefunctions to yield eigenvalues between a lowest,
Uswnv, and a highest, UgﬁhM, elge{llv;llue Because of
17 0w, — ol = max(|{Uiiiy, — o1, | Uiy — ) one finds
ay = (UOMM — USuv)/2. A sufficient condition for
convergence of the polarization series with the OMM
interaction operator ¥ omm 1s therefore,
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high 0
Uonm — Uowim < EY E(()) ) (30)
where Eg ) —E(()O) is the lower of the first excitation
energies of the isolated molecules A and B. Inserting this

into the “best possible” estimate of Kato [25] yields

hlgh low
(n) . [( 1)/2] Uomm — Uomm
E < 1,N/n
Uhigh _ ylow n=l
« [ Zomm ~ Yomm for n > 2 (31)
(0) (0) ’
El - EO

where N is the product of the dimensions of the full CI
spaces for molecules A and B, and I'(x) is the gamma
function. Note that an entirely analogous convergence
criterion holds if the OMM interaction operator,
7 omM, is replaced by its 1/R-expanded dpproximd-
tion, 47y pe, with some finite L, and that in this case
Ug'l\g,th and US¥,, have to be substituted by Ulh/lfz and
Ul

This convergence criterion and Eq. (31) are not very
helpful in practical calculations, since in general the
product space spanned by all molecular full CI wave-
functions will be much too large to calculate the OMM
or 1/Rl interaction matrices. Nevertheless, it is inter-
esting to apply Eqgs. (30) and (31) to the simplest pos-
sible case, the hydrogen atom in a GTF basis set
representation which is perturbed by a proton at some
fixed internuclear distance, R. In this case (as in all cases
involving only atoms) there is no difference between the
OMM and the 1/R-expanded interaction operator when
the nuclei are chosen as expansion centers and L is large
enough. Let us define a radius of convergence, RS,
belonging to Kato’s estimate as that internuclear dis-
tance where Unt —ylow  — E\Y — E” The polar-
ization series must converge for R >R . Table 1
contains a_comparison of R%| —and the convergence
radius, Rg)%%), defined as the smallest internuclear dis-
tance (varied in steps of 0.05 bohr) where the polar-
ization energy summed to order n = 100 was found
to deviate at most within numerical limits from the
“infinite-order” result, Eomm(R), which is obtained
from diagonalization of the total Hamiltonian matrix,
AN+ ¥ omm. The infinite-, second-, and third-order
results for an internuclear separation of 5.0 bohr are
also shown in Table 1; the corresponding estimates due
to Eq. (31) are given in parentheses. The labels DZP,
TZ2P, and TZ+ 2P denote the hydrogen-atom basis sets
of the 6-31G**, 6-311G(2d,2p), and 6-311++ G(2d,2p)
basis sets in the GAussiaN library [26], the labels Pol-
3s2p and ANO-6s4p3d denote Sadlej’s polarization and
Widmark’s atomic natural orbital contracted basis sets
in the MoLcas library [27]. The other, nonstandard,
basis sets were derived from Duijneveldt’s uncontracted
seven 1s GTFs set [28]: 7s5p3d1f denotes a basis set
where five 2p, three 3d, and one 4f GTF with the same
exponents as the most diffuse 1s GTFs have been added.
To these, one or two diffuse functions of each type with
exponents 0.027962 and 0.009787 were added to yield
the 8s6p4d2f and 9s7p5d3f sets. The remaining smaller
basis sets were obtained by deleting the 4f and 3d GTFs
from these.
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Table 1. Convergence radii, R.ony (Bohr), and polarization energies, E (Hartree), at R = 5 bohr for H + H*. For an explanation of the

basis sets see text

Basis Ry Riom —Eomm ~Egum ~Egum

DZP 1.098 0.85 2.0607 x 107* 2.0574 x 107 (4.8918 x 1074 3.5084 x 1077 (1.4066 x 107
TZ2P 2.107 1.75 1.5880 x 1073 1.5675 x 10‘3 (3.7610 x 10‘3) 2.2352 x 107> (4.0504 x 107%)
TZ+2P 2.468 1.75 1.5864 x 1073 1.5658 x 1073 (53022 x 107 ) 2.2327 x 107> (7.9636 x 107%)
Pol-3s2p 3.509 3.05 3.9544 x 1073 3.5896 x 1073 T (21247 x 10 ) 2.7694 x 107 (6.4051 x 1073)
ANO-6s4p3d 4.034 3.35 43644 x 1073 3.7686 x 107> (3.6223 x 1073 4.3094 x 107 (1.4298 x 1072
7s5p 3.837 3.30 3.9959 x 1073 3.5917 x 1073 (3.1400 x 1079 2.9406 x 107 (1.1270 x 107%)
8s6p 5.247 4.60 41312 x 1073 3.6015 x 107 (1.2108 x 1071 3.0673 x 107 (8.7583 x 1073
9s7p 7272 6.25 2.6962 x 107! 3.6012 x 1073 (7.4219 x 107h) 3.0715 x 107 (1.3294)
7s5p3d 5.165 4.55 6.1380 x 1073 4.0653 x 107 (1.1810 x 107" 8.9046 x 107 (8.2212 x 1073
8s6p4d 7.359 6.80 7.2840 x 107! 4.0810 x 107> (1.8184) 9.5122 x 107 (5.0970)
9s7p5d 10.636 9.80 6.5656 4.0813 x 107> (7.8406 x 10) 9.6069 x 107 (1.4435 x 103)
7s5p3d1f 5.906 5.25 2.4740 x 1072 4.2208 x 107 (3.0149 x 107") 1.3337 x 10‘* (3.3532 x 107Y)
8s6p4daf 8.803 8.20 5.0317 42410 x 1073 (4.6735 x 10) 1.4928 x 1073 ?(6.6412 10%)
9s7p5d3f 13.157 12.45 1.0186 x 10° 42456 x 107> (1.9810 x 10%) 2.1763 x 1073 (5.7973 x 10°)

The first observation following from Table 1 is that
R provides a very reasonable estimate for the smallest
internuclear distance where the polarization series in a
multipolar approximation still converges: the radius for
which the polarization energies summed to » = 100 start
to deviate appreciably from the infinite-order result is only
0.2-1.1 bohr smaller. As expected, augmenting the basis
set with diffuse and high angular momentum basis func-
tions leads to an increase in the radius for which the
multipole expanded polarization series diverges. The
main effect of these functions is to push the lowest and
highest eigenvalues of the OMM interaction matrix apart,
once the s and p function sets are sufficiently large to yield
reasonable 1s — 2s or 1s — 2p excitation energies.

An exception is seen when comparing the results for
the TZ2P and TZ+ 2P basis sets, which differ only in a
single diffuse s function. Here the first excitation energy
of 0.526 hartree as obtained with the TZ2P basis set
compares very badly to the exact value of 0.375 hartree
for the 1s — 2s and 1s — 2p transitions, while the value
of 0.381 for the TZ+ 2P basis set is much more rea-
sonable. At the same time Ujyyy — Usyry is hardly af-
fected (0.889 versus 0.899 hartree, at R = 5 bohr), thus
explaining the change in RS, . In contrast R remains
practically unaltered since the first excitation energies for
these basis sets correspond to ls — 2s excitations with
zero transition matrix elements. A way to improve the
estimates for the first five basis sets listed in Table 1,
which all have insufficient p function sets, would be to
use the energy of the first multipole- allowed transition,

ls — 2p in Eq. (30) instead of blindly using E< ).
Domg so brings RS down to 0.760 (DZP), 1. 751
(TZ2P), 1.758 (TZ+2P) 3.378 (Pol-3s2p), and 3.891

bohr (ANO-6s4p3d). For the DZP basis set this is even

smaller than R&?@, showing that the polarization series

will converge much later than at » =100 for this
very small distance of only 0.76 bohr. For all other basis
sets the ls — 2p excitation energy was found to be
the lowest excitation energy, so nothing would change
here.

Using the 1s — 2p transition energy in Eq. (31) also
leads to improved estimates for the polarization energies
of different orders: in the case of the DZP basis set and

an internuclear separation of 5.0 bohr one has
2] < 2.2003 x 10~ hartree and [ES)y,| < 2.8457x

10 hartree, which should be compared to the polar-
ization energies and the conservative estimates shown in
Table 1. As the table reveals, however, in general the
upper bound provided by Eq. (31) is much too high
compared to the absolute magnitude of the polarization
energy of a given order.

For a couple of basis sets it was found that RCL%OV > 5
bohr. These cases correspond with relatively large values
of Eomm, Which, remember, is obtained from diagonal-
ization of the total Hamiltonian, and not by summing
the polarization series. While the second- and third-or-
der polarization energies at R = 5 bohr are all reason-
ably small and not too strongly basis set dependent, one
could expect that the higher-order polarization energies
at R =5 bohr will become larger and larger in these
cases, since convergence of the polarization series itself
is no longer guaranteed. This is indeed the case. To
give an example, for the 9s7pS5d3f basis set one finds

ESY = —1.0375 x 103 hartree, Euy, = —1.4899 x 1036

hartree, Egun, = —2.1394 x 10% hartree, etc., providing

strong numerical evidence for a divergence of the
polarization series in that case. Rememberlng that EE)IE/{M
is the limit of the 1/R expansion of E for the given
basis set, these results clearly demonstrate that the 1/R-
expanded polarization series can diverge though each of
its members has a convergent multipole expansion.
Nevertheless, when a finite-dimensional basis set is used
one can always define an infinite-order (in n) 1/R-ex-
panded interaction energy Eomm, from diagonalization
of a Hamiltonian operator which includes the limit (in L)
of the 1/R-expanded interaction matrix, but a 1/R-ex-
panded polarization series, in general, will only converge
to it when Eq. (30) is fulfilled.

While the infinite-order (in n), infinite-power (in L),
interaction energy Eomm Wwill always be a finite number
under the conditions of theorem 6, one observes from
the results collected in Table 1 that this number becomes
larger when the basis set size is systematically increased.
This demonstrates that the multipole expansion of in-
termolecular interaction energies in a complete, infinite-



dimensional basis set can at most be asymptotically
convergent, in agreement with theorem 1.

On the other hand, on looking at the variation of the
second-order polarization energies, EgKAM, with the basis
set one could get the impression that they converge when
the basis set size is increased, in contradiction to theorem
2. Yet, this is only a consequence of the fact that Table 1
only contains results obtained with up to f functions at
most. With up to f functions only, the second-order in-
duction energy will contain terms in 1/R with a power of
up to 1/R'"™. The exact induction energy for R = 5 bohr
up to this power of 1/R was calculated to be
—9.2694 x 1073 hartree by Dalgarno and Lewis [9]. This
is more than twice the value obtained with the largest
basis set used here. Part of the deviation of the basis set
result from the exact one is due to contributions of the
continuum wavefunctions to the latter. In Ref. [9] the
continuum contributions were found to be responsible
for an error of a factor of 2 at most. Another part of the
deviation comes from the neglect of certain terms of
order 1/R' (and less) in the OMM value, which, for
example, contains no 2°-pole-2’-pole polarizabilities
owing to the limitation of f functions, while the re-
maining part is due to inexactness of the polarizabilities
as calculated with the basis set. The divergence of the
exact multipole-expanded induction energy will show up
only for much larger powers of 1/R: the contribution
of order 1/R* is —4.9047 x 1072 hartree, that of order
1/R* is 0.24442 hartree, and that of order 1/R* is
1.44771 hartree [9]. In a basis set expansion one needs
to go up to very high angular momentum functions
(1 functions and higher) to see the beginning of EC?MM
divergence upon basis set extension.

Let us finally remark that for the atom—proton in-
teraction the considerations presented here are not only
valid for GTF or STF basis sets, but also for square-
integrable functions with other radial dependencies. It is
only necessary that those basis sets are finite-di-
mensional and that they possess well-defined angular
momentum properties.

5 Summary and conclusions

It was shown that the validity of theorem 6 is a direct
consequence of the convergence of 1/R expanded
interaction energies between elementary charge distribu-
tions. In the proof it was implied that the zeroth-order
polarization function is given by the product of the full
CI ground state wavefunctions of both molecules and
that the entire space spanned by all products of the
ground-state and excited-state full CI wavefunctions is
available for expansion of the higher-order polarization
corrections. This is equivalent to assumimg that full CI
charge densities and response properties are available.
Yet, at least for the first- and second-order contributions
this is not essential: any quantum chemical method
which employs finte-dimensional, one-particle basis sets
leads to an expansion of the electronic charge density,
pa(r), in ECDs yi(r)yp(r), and the (frequency-depen-
dent) first-order polarization propagator, Il(r,r’;w),
entering the calculation of the second-order induction
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and dispersion energies [3] can always be expanded in
a finite number of products of ECDs such as
1) (1) 25 (1) g (x'). Therefore, one can also use mul-
tipole moments and polarizabilities from more approx-
imate schemes, such as Hartree—Fock, density functional,
Moller—Plesset or coupled-cluster methods to calculate
1/R-expanded first- and second-order interaction ener-
gies and one can still be sure that they will converge with
increasing L — as long as the conditions of theorem 6
are fulfilled and the basis set is left unaltered. Similar
arguments can be put forward for higher-order induc-
tion energies and the third-order induction—dispersion
contributions, i.e., those contributions which can be
calculated from molecular higher-order (frequency-
dependent) polarizabilities [3].

Furthermore, with GTF or STF basis sets there is not
only a limit of the 1/R expansion for each nth-order
contribution of the polarization series but one can also
define a 1/R-expanded interaction energy of infinite or-
der in n. This is achieved by diagonalizing the matrix of a
Hamiltonian operator which includes the 1/R-expanded
interaction terms. The infinite-order interaction energy
will converge with increasing powers, L, of 1/R under the
same conditions as the individual polarization contri-
butions will converge. This does not imply, however,
that the 1/R-expanded polarization series will converge
with increasing n, and it is important to clearly distin-
guish between convergence in L and convergence in 7.
Convergence in n to the infinite-order interaction energy
is only guaranteed when the difference between the
highest and lowest eigenvalues of the 1/R-expanded in-
teraction matrix is smaller than the excitation energy of
the first mutipole-allowed transition, otherwise the series
may diverge. Since the difference between the eigen-
values of the interaction matrix will become smaller and
smaller with increasing intermolecular distance, this
convergence criterion may be converted into a conver-
gence radius, which will depend on the highest power of
the 1/R-expanded interaction matrix employed.

The hydrogen atom perturbed by a proton served for
illustration. Here, as for all atom—atom interactions, it
is particularly easy to reach the limit L = oo since the
multipole expansion will terminate at some L which
depends on the highest angular momentum of the basis
function set employed. The 1/R expansion of the
nth-order polarization energy contribution and of the
infinite-order interaction energy therefore trivially
converges with increasing L for each distance between
the nuclei larger than zero. The 1/R-expanded polar-
ization series itself, however, converges with n only
outside a certain radius, which strongly depends on the
basis set and tends to become larger and larger upon
augmentation with diffuse and high angular momentum
basis functions.

This brings us to the last point: convergence with the
size of the basis set. The limit of the 1/R-expanded nth-
order polarization energies depends on the basis set
employed. It represents the exact multipolar contribu-
tion to the polarization energy for that particular basis
set, but that does not imply that there exists a limit for
the multipolar expansion of the exact nth-order polar-
ization energy or of the exact total interaction energy. In
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fact, according to theorems 2—4 these limits, in general,
will not exist. This was clearly reflected in the increasing
infinite-order polarization energies for the H + HT ex-
ample when the basis set was augmented. Observation of
the same effect for the second- and third-order polar-
ization energies, however, would have required inclusion
of much larger basis sets than those considered here.

For modeling intermolecular interaction potentials it
is nearly always very useful to distinguish between long-
range multipole interactions and exponentially decreas-
ing short-range interactions. Part of these short-range
interactions are the so-called penetration energies [13],
which represent the difference between the 1/R-expand-
ed polarization energies and their nonexpanded coun-
terparts. Clearly, divergence of the 1/R expansion makes
this a somewhat problematic concept, and it is gratifying
to see that multipolar and penetration contributions can
at least be cleanly defined when finite-dimensional GTF
or STF basis sets are used and that they can be deduced,
in practice, from the interactions between OMM distri-
butions corresponding to ECDs.
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